Highly Efficient Arsenic Removal Using a Composite of Ultrafine Magnetite Nanoparticles Interlinked by Silane Coupling Agents
نویسندگان
چکیده
Arsenic (As) contamination in groundwater is a great environmental health concern and is often the result of contact between groundwater and arsenic-containing rocks or sediments and from variation of pH and redox potentials in the subsurface. In the past decade, magnetite nanoparticles (MNPs) have been shown to have high adsorption activity towards As. Alerted by the reported cytotoxicity of 5–12 nm MNP, we studied the adsorption behavior of 1.15 nm MNP and a MNP composite (MNPC), MNPs interlinked by silane coupling agents. With an initial concentration of As at 25 mg L(-1), MNPs exhibited high adsorption capacity for As(V) and As (III), 206.9 mg·g(-1) and 168.6 mg·g(-1) under anaerobic conditions, respectively, and 109.9 mg·g(-1) and 108.6 mg·g(-1) under aerobic conditions, respectively. Under aerobic conditions, MNPC achieved even higher adsorption capacity than MNP, 165.1 mg·g(-1) on As(V) and 157.9 mg·mg(-1) on As(III). For As(V) at 50 mg L(-1), MNPC achieved an adsorption capacity as high as 341.8 mg·g(-1), the highest in the literature. A kinetic study indicated that this adsorption reaction can reach equilibrium within 15 min and the rate constant of As(V) is about 1.9 times higher than that of As(III). These results suggested that MNPC can serve as a highly effective adsorbent for fast removal of As.
منابع مشابه
Removal of Diazinon Pesticide Using Amino-silane Modified Magnetite Nanoparticles from Contaminated Water
A magnetically recoverable adsorbent has been prepared by silica-coated magnetic nanoparticles through an amine functionality (ASMNPs). The ASMNPs were characterized by XRD, TEM, SEM, and FT-IR spectroscopy. It was used as an efficient and economical adsorbent for removing O, O-Diethyl O-[4-methyl-6-(propan-2-yl) pyrimidin-2-yl] phosphorothioate (diazinon) from...
متن کاملA New and Efficient Method for the Adsorption and Separation of Arsenic Metal Ion from Mining Waste Waters of Zarshouran Gold Mine by Magnetic Solid-Phase Extraction with Modified Magnetic Nanoparticles
Widespread arsenic contamination of mining wastewater of Zarshouran (West Azerbaijan province) has led to a massive epidemic of arsenic poisoning in the whole of surrounding areas. It is estimated that approximately all agriculture fields are being irrigated with the water that its arsenic concentrations elevated above the World Health Organization’s standard of 10 parts per billion. A novel ad...
متن کاملFabrication of 2-Chloropyridine-Functionalized Fe3O4/Amino-Silane Core–Shell Nanoparticles
In this report, magnetic iron oxide nanoparticles were synthesized via coprecipitation of Fe2+ and Fe3+ with ammonium hydroxide, and the surface of synthesized nanoparticles was organically functionalized by commercially available amine coupling agent namely, 3-aminopropyl trimethoxysilane (APTS) by using well-known sol–gel method. Further reaction of the synthesized Fe3O4@APTS core-shell magne...
متن کاملSynthesis and Characterization of Hybrid-Magnetic Nanoparticles and Their Application for Removal of Arsenic from Groundwater
Multiwall carbon nanotubes (MWCNTs) were oxidized with different agents and a characterization study was carried out. Then, hybrid-magnetic nanoparticles (HMNPs) were synthesized as iron oxide supported on the selected multiwalled carbon nanotubes (MWCNTs-Fe₃O₄) obtained from MWCNTs oxidized with HNO3. The HMNPs characterization revealed the presence of iron oxide as magnetite onto the MWCNTs s...
متن کامل